Back to list

Francesco Tassone Write a Message

Researcher

Center

CNST@PoliMi Milano

Contacts

Via Pascoli 70/3
+39 022 3999 880

About

8/2009- Team Leader, Italian Institute of Technology, Center for Nanoscience and Technology

Study of the electronic and optical properties of semiconductor nanoparticles, and hybrid composites with organic molecular materials for photovoltaic applications. Ultra-fast optical characterization of charge-injection, diffusion and recombination dynamics in hybrid semiconductor-molecular and metal-molecular interfaces. Transport properties of photons in nanostructured solar cells, effects of diffusion and improvement of cell efficiencies.

2009, Collaborator, Dipartimento di Scienza dei Materiali, Università di Milano Bicocca:

Modeling light diffusion in polymeric composites embedding functional nanoparticles, including phosphors, for applications in coatings with optical functionalities and bulk materials for the illumination industry. Cordination of experimental and characterization activities.

2004-2008, research scientist, Pirelli Labs Optical Innovation, 1/2004-4/2008:

Proposed, set-up and coordinated large projects for the development of next generation tunable lasers with direct modulation at 10 gigabit per second, extended reach, based on hybrid integration of InP based gain media with silicon on insulator technology (SOI) planar light wave circuit (PLC). Chief technical reference for opto-electronic design of tunable external cavity laser in the Labs, chief reference for III-V semiconductor gain media. Responsible for competitor analysis in these areas. Design of SOI integrated optical components, realized in the labs. Developed free-space optical components for the coupling of fiber to active devices (lasers and photodiodes) using plastic molded lenses.

2000-2004, Research scientist, Pirelli Cavi e Sistemi Telecom, Fiber R&D:

Managed the product innovation area for fiber products, 4 projects, 3 researchers and fabrication at the manufacturing plant. Developmed advanced numerical modeling for micro structured fibers. Successful realization of first plastic micro structured fiber. Research on novel glasses for Raman amplification, on Rayleigh scattering properties of oxide glasses and modified silica. Set-up and coordinated 3 external research activities with universities, including modeling and measurements.


Stage in Hewlett-Packard Instrumentation and Photonics Laboratory, Palo Alto (U.S.A.) 10/1988-11/1988:
Set-up a spectroscopic system for qualifying semiconductor lasers, including ultra-fast electronics and fiber optics. Modeling of planar waveguides for acousto-optic modulators.

Academic years 2005/2006, and 2006/2007. Professor, short course of computer aided optical design, University of Milan, Bicocca, Optics and optometry specialization course. 

1999-2000: Post-doctoral fellow in the International School for Advanced Studies, Trieste: molecular dynamics, electronic structure calculations of carbon dioxide under ultra-high pressures. Discovered a bi-molecular state with Raman spectra signatures, experimentally observed in the products of carbon combustion under ultra-high pressures.

1996-1999 Post-doctoral fellow in Stanford University: transport of quantum fluids in low-dimensional semiconductors at ultra-low temperatures, classical and quantum noise in semiconductor light emission. Set-up a key experiment showing the first evidence of stimulated scattering of massive bosons in the solid-state.

1994-1996 Post-doctoral fellow in Ecole Polytechnique Federale de Lausanne: semiconductor optics, two-component quantum fluids in low-dimensional semiconductors at ultra-low temperatures. Key work in the field first showing existence of a non-equilibrium bottleneck in the dynamics of the quantum fluids. Work on the light emission of correlated electron-hole gas. Supervised Ph.D. work of 1 student.

1992-1993: Visiting scientist at the Romand Institute of Numerical Research in Material Physics (IRRMA), Ecole Polytechnique Federale Lausanne (EPFL): molecular dynamics and electronic structure calculations, key work on physically-based optimization of the Car-Parinello ab-initio molecular dynamics method, later included in all standard codes.

1990: Collaborator, Italian National Institute of the Physics of Matter (I.N.F.M.):  transport in semiconductors, resonant tunneling diodes.

STUDIES

Ph. D., Scuola Normale Superiore, Pisa, Italy, 30-june-1994, 70/70 cum laude, semiconductor optics and low-dimensional systems.

Diploma, Scuola Normale Superiore, Pisa, Italy, 21-may-1990.

Master in Physics, University of Pisa, Italy, 28-feb-1990, 110/110 cum laude. Semiconductor physics, transport in solids.

Projects

Green chemistry approach for optoelectronic device applications based on hybrid organic/inorganic materials:


We are currently exploring potential solutions to the color aging problems of OLEDs by shifting the burden of the emission of white light from different organic materials to robust inorganic materials, while keeping the advantages of cheap and scalable wet processing. Nanoparticles-based LED have been demonstrated by Samsung. The devices work by injecting charges in the nanoparticles (NPs). This is inefficient and requires to separately evaporate an organic hole-transporting layer. As a result, the device efficiency is low, comparable to incandescent light. Moreover, toxic Cd based NP have been used. Instead, we avoid charge injection into the NPs by using a single blue-light emitting polymer, directly exciting NPs through energy transfer, and we also use non-toxic NPs successfully synthesized in the Nanochemistry Labs, which are also optimal for the energy transfer process. We are also actively working on improving the energy transfer and device processability by functionalizating the NPs in solution, prior to deposition.

In another approach, we are developing fluorescent nanocomposites where the non-toxic NPs are embedded in a PMMA solid matrix. These materials may be used in conjunction to blue-emitting, GaN based LEDs to obtain white light emitters.

 

Selected Publications

  1. L.De Trizio, M.Prato, A.Genovese, A.Casu, M.Povia, R.Simonutti, M. J. P.Alcocer, C.D’Andrea, F.Tassone, and L.Manna "Strongly Fluorescent Quaternary Cu–In–Zn–S Nanocrystals Prepared from Cu1-xInS2 Nanocrystals by Partial Cation Exchange", Chem. Mater., 2012, 24 (12), pp 2400–2406
  2. M.G. Lupo, F. Scotognella, M. Zavelani-Rossi, G. Lanzani, L. Manna and F. Tassone, "Band-edge ultrafast pump–probe spectroscopy of core/shell CdSe/CdS rods: assessing electron delocalization by effective mass calculations" Phys. Chem. Chem. Phys., 2012, 14, 7420-7426
  3. H. Li, R. Brescia, R. Krahne, G. Bertoni, M. J. P. Alcocer, C. D'Andrea, F- Scotognella, F. Tassone, M. Zanella, M. De Giorgi, and L. Manna, "Blue-UV-Emitting ZnSe (Dot)/ZnS (Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange", ACS Nano, Vol. 6, pp 1637–1647 (2012)
  4. F. Scotognella, K. Miszta, D. Dorfs, M. Zavelani-Rossi, R. Brescia, S. Marras, L. Manna, G. Lanzani, and F. Tassone, J. Phys. Chem. C, 115 (18), pp 9005–9011, (2011)
  5. F. Scotognella, G. Della Valle, A.R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, and F. Tassone "Plasmon Dynamics in Colloidal Cu2–xSe Nanocrystals" Nano Lett., Vol. 11, pp 4711–4717 (2011)
  6. M. Zavelani-Rossi, M.G. Lupo, F. Tassone, L. Manna, G. Lanzani, "Suppression of Biexciton Auger Recombination in CdSe/CdS Dot/Rods: Role of the Electronic Structure in the Carrier Dynamics", Nanoletters, vol. 10, p. 3142-3150 (2010)
  7. F. Tassone, G.L. Chiarotti, R. Rousseau, S. Scandolo, E. Tosatti “Dimerization of CO2 at high pressure and temperature” Chemphyschem. Vol 6, p 1752-6 (2005).

  8. D. Donadio, M. Bernasconi, F. Tassone, "Photoelasticity of sodium silicate glass from first principles" Phys. Rev . Bvol 70, 214205-1 (2004).

  9. F. D'Amore, S.M. Pietralunga, P. Lorusso, M. Martinelli, A. Zappettini, E.D. Bo, F. Tassone, P. Tognini, M. Travagnin, "Nonlinear optical characterisation of CdS and PbS quantum dots dispersed in a glass matrix" Phys. Status Solidi C, vol 4, 1001 (2004).

  10. G. Dai, F. Tassone, A. Li Bassi, V. Russo, C.E. Bottani, and F. D' Amore, "TeO2-based glasses containing Nb2O5, TiO2 and WO3 for Discrete Raman Fiber Amplification," Photonics Technology Letters. vol. 16, 1011 (2004).

  11. D. Donadio, M. Bernasconi and F. Tassone, "Photoelasticity of crystalline and amorphous silica from first principles", Phys. Rev. B. vol. 68, 134202(2003).

  12. G. Weihs, H. Deng, R. Huang, M. Sugita, F. Tassone and Y. Yamamoto, " Exciton-polariton lasing in a microcavity", Sem. Science and Technology, vol. 18, S386 (2003).

  13. C. Piermarocchi and F. Tassone, "Role of bound pairs in the optical properties of highly excited semiconductors: A self-consistent ladder approximation approach", Phys. Rev. B vol. 63, 245308 (2001).

  14. F. Tassone and Y. Yamamoto, "Lasing and squeezing of composite bosons in semiconductor microcavity posts.", Phys. Rev. A vol. 62, 063809 (2000)

  15. G. Klimovitch, F. Tassone, Y. Yamamoto, and H. Cao, "Stimulated resonant tunneling into quantum well excitons.", Phys. Lett. A. vol 267, 281 (2000).

  16. R. Huang, F. Tassone, and Y. Yamamoto, "Experimental Evidence for stimulated scattering of excitons into polaritons in a semiconductor microcavity.", Phys. Rev. B, vol. 61, R7854, (2000).

  17. F. Tassone and Y. Yamamoto, "Exciton-Exciton Scattering dynamics in a Semiconductor Microcavity and Stimulated Scattering into Polaritons", Phys. Rev. B, vol. 59, p. 10830-10842, (1999).

  18. F. Tassone and C. Piermarocchi, "Electron-hole correlation effects in the emission of light from quantum wires", Phys. Rev. Lett., vol. 82, p. 843-846, (1999).

  19. C. Piermarocchi, V. Savona, A. Quattropani, P.E. Selbmann, P. Schwendimann, F. Tassone, "Photoluminescence spectra in semiconductor confined systems: effects of Coulomb correlation" Phys. Status Solidi B, vol.206, no.1, p. 455-62, (1999).

  20. J. Wainstain, G. Cassabois, Ph. Roussignol, C. Delalande, M. Voos, F. Tassone, R. Houdre, R. P. Stanley, U. Oesterle, "Relaxation of microcavity polariton",Superlattices and Microstructures, vol.22, no.3, p. 389-92, (1997).

  21. C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, F. Tassone, "Role of carrier-phonon interaction on the exciton formation in quantum wells" , Phys. Status Solidi B, vol.204, no.1, p. 191-4, (1997).

  22. G.F. Lorusso, F. Tassone, V. Capozzi, D. Martin, J.L. Staehli, "Anderson and Stark localization in GaAs/(AlGa)As disordered superlattices", Superlattices and Microstructures, vol.23, no.1, p. 9-12 (1998).

  23. C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, F. Tassone, "Photoluminescence and carrier dynamics in GaAs quantum wells", Phys. Status Solidi A, vol.164, no.1, p. 221-5 (1997).

  24. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, "Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons", Phys. Rev. B, vol. 56, pag. 5774 (1997).

  25. V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, P. Schwendimann, "Microscopic theory of motional narrowing of microcavity polaritons in a disordered potential", Phys. Rev. Lett., vol. 78, pag. 4470, (1997).

  26. G. Bongiovanni, A. Mura, F. Quochi, S. Gurtler, J. L. Staehli, F. Tassone, R. Stanley, U. Oesterle, R. Houdre, "Coherent exciton-photon dynamics in semiconductor microcavities: the influence of inhomogeneous broadening", Phys. Rev. B, vol. 55, pag. 7084, (1997).

  27. S. Pau, G. Bjork, H. Cao, F. Tassone, R. Huang, Y. Yamamoto, "LO-phonon-enhanced microcavity polariton emission", Phys. Rev. B, vol. 55, pag. R1942, (1997).

  28. C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, P. Schwendimann, "Exciton formation rates in GaAs-AlxGa1-xAs quantum wells", Phys. Rev. B, vol. 55, pag. 1333, (1997).

  29. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, in "Microcavity and Photonics Bandgaps", pages 87-94, 1996, edited by J. Rarity and C. Weisbuch, Kluwer Academic Publishers, Netherland.

  30. A. Quattropani, V. Savona, F. Tassone, and P. Schwendimann, in "Quantum Optics of Confined Systems", proceedings of the 1995 Les Houches School of Physics, eds. M. Ducloy and D. Bloch, Kluwer Academic, (1996).

  31. G. F. Lorusso, F. Tassone, V. Capozzi, J. L. Staehli, D. Martin, "Anderson and Stark localization in superlattices: residual coupling and fine structure", Solid State Comm., vol. 100, pag. 17 (1996).

  32. G. F. Lorusso, F. Tassone, V. Capozzi, C. Perna, D. Martin, "Reflectance of GaAs/(AlGa)As disordered superlattices", Solid State Comm., vol. 98, pag. 705, (1996).

  33. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, "Photoluminescence decay times in strong-coupling semiconductor microcavities", Phys. Rev. B, vol. 53, R7642, (1996).

  34. C. Piermarocchi, F. Tassone, V. Savona, A. Quattropani, P. Schwendimann, "Nonequilibrium dynamics of free quantum-well excitons in time-resolved photoluminescence", Phys. Rev. .B, vol. 53, pag. 15834, (1996).

  35. V. Savona, F. Tassone, C. Piermarocchi, A. Quattropani, P. Schwendimann, "Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures", Phys. Rev. B, vol. 53, 13051 (1996).

  36. F. Tassone, F. Bassani, "Quantum grating reflectivity and grating polariton lifetimes", Nuovo Cimento D, vol.17D, ser.1, p. 1743 (1995).

  37. V. Savona, F. Tassone, "Exact quantum calculation of polariton dispersion in semiconductor microcavities", Solid State Comm., vol. 95, pag. 673, (1995).

  38. F. Tassone, F. Bassani, "Reflectivity of the quantum grating and the grating polariton", Phys. Rev. B, vol. 51, pag. 16973, (1995).

  39. F. Tassone, F. Mauri, R. Car, "Acceleration schemes for ab initio molecular-dynamics simulations and electronic-structure calculations", Phys. Rev. B, vol. 50, pag. 10561, (1994).

  40. F. Bassani, F. Tassone, L. C. Andreani, Corso CXVII of the italian physical society, bologna, italy, (1993).

  41. L. C. Andreani, F. Bassani, F. Tassone, International Conference Series, "Optics of Excitons in Confined Systems", ed. A. D'Andrea, R. Del Sole, R. Girlanda, A. Quattropani, vol. 123, pag 25, (1992).

  42. S. Scandolo, F. Tassone, "Optical bistability induced by charge separation in asymmetric quantum wells", Physica Status Solidi B, vol. 173, pag. 453, (1992).

  43. F. Tassone, F. Bassani, "Quantum wire polaritons", Nuovo Cimento D, vol. 14, pag. 1241, (1992).

  44. L. C. Andreani, F. Tassone, F. Bassani, "Radiative lifetime of free excitons in quantum wells" Solid State Comm., vol. 77, pag. 641, (1991).

  45. F. Tassone, F. Bassani, L. C. Andreani, "Quantum-well reflectivity and exciton-polariton dispersion", Phys. Rev. B, vol. 45, pag. 6023, (1992).

  46. F. Tassone, F. Bassani, L. C. Andreani, "Resonant and surface polaritons in quantum wells", Nuovo Cimento D, vol. 12, pag. 1673, (1990).

BOOKS: Yoshihisa Yamamoto - F. Tassone - H. Cao, 'Semiconductor Cavity Quantum Electrodynamics', Springer Tracts in Modern Physics v. 169, pub. year 2000.


PATENTS:

  1. WO05109056A1, EP1745316A1 MICROSTRUCTURED OPTICAL FIBRE;
  2. US7366384B2, EP1609008B1, MICROSTRUCTURED OPTICAL FIBRE;
  3. US20060033983A1; WO04015828A1; EP1525647B1 OPTICAL FIBER FOR RAMAN AMPLIFICATION.
  4. WO07003208A1 METHOD AND SYSTEM FOR HITLESS TUNABLE OPTICAL PROCESSING;
  5. US7526157B2 POINT-TO-POINT OPTICAL FIBRE LINK
  6. WO/2007/107187A1 INTEGRATED LASER OPTICAL SOURCE WITH ACTIVE AND PASSIVE SECTIONS FORMED IN DISTINCT SUBSTRATES; WO/2007/107186A1 INTEGRATED LASER OPTICAL SOURCE
  7. WO/2012/041480 LIGHTING SYSTEM

INFORMATION NOTICE ON COOKIES

IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website.
By clicking on further information, the full information notice on the types of cookies used will be displayed and you will be able to choose whether or not to accept cookies whilst browsing on the website.
Further information
Accept and close

I numeri di IIT

L’Istituto Italiano di Tecnologia (IIT) è una fondazione di diritto privato - cfr. determinazione Corte dei Conti 23/2015 “IIT è una fondazione da inquadrare fra gli organismi di diritto pubblico con la scelta di un modello di organizzazione di diritto privato per rispondere all’esigenza di assicurare procedure più snelle nella selezione non solo nell’ambito nazionale dei collaboratori, scienziati e ricercatori ”.

IIT è sotto la vigilanza del Ministero dell'Istruzione, dell'Università e della Ricerca e del Ministero dell'Economia e delle Finanze ed è stato istituito con la Legge 326/2003. La Fondazione ha l'obiettivo di promuovere l'eccellenza nella ricerca di base e in quella applicata e di favorire lo sviluppo del sistema economico nazionale. La costruzione dei laboratori iniziata nel 2006 si è conclusa nel 2009.

Lo staff complessivo di IIT conta circa 1440 persone. L’area scientifica è rappresentata da circa l’85% del personale. Il 45% dei ricercatori proviene dall’estero: di questi, il 29% è costituito da stranieri provenienti da oltre 50 Paesi e il 16% da italiani rientrati. Oggi il personale scientifico è composto da circa 60 principal investigators, circa 110 ricercatori e tecnologi di staff, circa 350 post doc, circa 500 studenti di dottorato e borsisti, circa 130 tecnici. Oltre 330 posti su 1400 creati su fondi esterni. Età media 34 anni. 41% donne / 59 % uomini.

Nel 2015 IIT ha ricevuto finanziamenti pubblici per circa 96 milioni di euro (80% del budget), conseguendo fondi esterni per 22 milioni di euro (20% budget) provenienti da 18 progetti europei17 finanziamenti da istituzioni nazionali e internazionali, circa 60 progetti industriali

La produzione di IIT ad oggi vanta circa 6990 pubblicazioni, oltre 130 finanziamenti Europei e 11 ERC, più di 350 domande di brevetto attive, oltre 12 start up costituite e altrettante in fase di lancio. Dal 2009 l’attività scientifica è stata ulteriormente rafforzata con la creazione di dieci centri di ricerca nel territorio nazionale (a Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) e internazionale (MIT ed Harvard negli USA) che, unitamente al Laboratorio Centrale di Genova, sviluppano i programmi di ricerca del piano scientifico 2015-2017.

IIT: the numbers

Istituto Italiano di Tecnologia (IIT) is a public research institute that adopts the organizational model of a private law foundation. IIT is overseen by Ministero dell'Istruzione, dell'Università e della Ricerca and Ministero dell'Economia e delle Finanze (the Italian Ministries of Education, Economy and Finance).  The Institute was set up according to Italian law 326/2003 with the objective of promoting excellence in basic and applied research andfostering Italy’s economic development. Construction of the Laboratories started in 2006 and finished in 2009.

IIT has an overall staff of about 1,440 people. The scientific staff covers about 85% of the total. Out of 45% of researchers coming from abroad 29% are foreigners coming from more than 50 countries and 16% are returned Italians. The scientific staff currently consists of approximately 60 Principal Investigators110 researchers and technologists350 post-docs and 500 PhD students and grant holders and 130 technicians. External funding has allowed the creation of more than 330 positions . The average age is 34 and the gender balance proportion  is 41% female against 59% male.

In 2015 IIT received 96 million euros in public funding (accounting for 80% of its budget) and obtained 22 million euros in external funding (accounting for 20% of its budget). External funding comes from 18 European Projects, other 17 national and international competitive projects and approximately 60 industrial projects.

So far IIT accounts for: about 6990 publications, more than 130 European grants and 11 ERC grants, more than 350 patents or patent applications12 up start-ups and as many  which are about to be launched. The Institute’s scientific activity has been further strengthened since 2009 with the establishment of 11 research nodes throughout Italy (Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) and abroad (MIT and Harvard University, USA), which, along with the Genoa-based Central Lab, implement the research programs included in the 2015-2017 Strategic Plan.