Back to list

Mario Caironi Write a Message

Researcher TT (TT1)
Tenure Track Researcher


Via Pascoli, 70/3
+39 02 23996102


Mario Caironi was born in Bergamo (Italy) in 1978. He studied at “Politecnico di Milano” (Milan, Italy) where he obtained his Laurea degree in Electrical Engineering in 2003 and a Ph.D. in Information Technology with honours in 2007, with a thesis on organic photodetectors and memory devices. In March 2007 he joined the group of Prof. Henning Sirringhaus at the Cavendish Laboratory (Cambridge, UK) as a post-doctoral research associate. He worked in Cambridge for 3 years on high resolution inkjet printing of downscaled organic transistors and logic gates, and on charge injection and transport in high mobility polymers. In April 2010 he has been appointed as a Team Leader at the Center for Nano Science and Technology@PoliMi of the Istituto Italiano di Tecnologia (Milan, Italy), and in 2014 he entered the tenure track at the same institution. He is author and co-author of more than 70 scientific papers in international journals and books. He is currently interested in solution based high resolution printing techniques for opto-electronic and thermoelectrics devices fabrication, in the device physics of organic semiconductors based field-effect transistors and their integration in high-frequency printed circuits, and in solution processed organic photodetectors for imaging and X-rays detection applications. He is an 2014 ERC grantee.


Mario Caironi is involved in various research activities within the field of solution processible organic semiconductors devices and physics.

If you are interested in some of these activities, please write to




High-frequency printed and direct-written Organic-hybrid Integrated Circuits

The HEROIC project aims at filling the gap between the currently low operation frequencies of printed, organic flexible electronics and the high-frequency regime, by demonstrating polymer-based field-effect transistors with maximum operation frequencies of 1 GHz and complementary integrated logic circuits switching in the 10-100 MHz range, fabricated by means of printing and direct-writing scalable processes in order to retain low temperature manufacturability of cost-effective large area electronics on plastic. The recent development of semiconducting polymers with mobilities in the range of 1 to 10 cm2/Vs, and even higher in the case of aligned films, suggests that suitably downscaled printed polymer transistors with operation frequencies in the GHz regime, at least three orders of magnitude higher than current printed polymer devices, are achievable, by addressing in a holistic approach the specific challenges set in the HEROIC trans-disciplinary research programme: (i)development of scalable high resolution processes for the patterning of functional inks, where printing will be combined with direct-writing techniques such as fs-laser machining, both in an additive and subtractive approach; (ii)development of printable nanoscale hybrid dielectrics with high specific capacitance, where low-k polymer buffer materials will be combined with solution processable high-k dielectrics, such as insulating metal oxides; (iii)improvement of the control of charge injection and transport in printed polymer and hybrid semiconductors, where high-mobility 1-D and 2-D structures are included in polymer films; (iv)development of advanced printed and direct-written transistors architectures with low parasitic capacitances for high-speed operation. HEROIC will radically advance and expand the applicability of polymer-based printed electronics, thus making it suitable for next generation portable and wearable short-range wireless communicating devices 

ERC Starting Grant Agreement 638059

Funding: ~ 1.6 M€

Start Date: 01/04/2015

End Date: 01/04/2020



Joint-Lab between IIT and OMET s.r.l. / commercial project
“Roll-to-Roll” printing of polymeric, large area, photovoltaic modules


SOLAR-PRINT will develop a technology to produce, on an industrial scale, large-area solar cells which are lightweight, cheap and easy to integrate, thanks to a continuous “Roll-to-Roll” printing technique. Photovoltaic modules produced by means of this technology will have a competitive cost and they will be “green” thanks to a lower energy consumption needed for their fabrication, to a shorter payback time and to a lower production of equivalent green-house gases. This technology will allow the fabrication of flexible solar cells on a plastic substrate, in the shape of long ribbons, colored and semi-transparent, paving the way to novel applications, and markets, which are innovative, and at the same time alternative with respect to silicon ones.

altSOLAR-PRINT is today a joint-lab between OMET s.r.l. (Lecco, Italy) and IIT at the “Center for Nano Science and Technology @PoliMi”. The project benefits from the specific know-how of the CNST and of the “Politecnico di Milano” in the field of organic solar cells (OSCs) and from the printers technology of OMET, company leader in the design and production of industrial printing lines for self-adhesive labels, flexible packaging and paper.

SOLAR-PRINT won the first prize for the “CleanTech & AgroFood” section at the StartCup Milano-Lombardia 2011 and was finalist for the “Green” section at the national stage of “Working Capital 2011” promoted by Telecom and PNI.

Project Coordinator: Dr. Mario Caironi

Project Partners: CNST@PoliMi-Istituto Italiano di Tecnologia, OMET s.r.l.

Duration: July 2012 –December 2015



Inkjet-Printed organic Photodetectors for Imaging Applications
Marie-Curie Career Integration Grant 2011

Grant agreement PCIG09-GA-2011–291844, within European Union Seventh Framework Programme (FP7/2007–2013)

The recent development of a wide range of solution processable functional materials, especially organic semiconductors and highly conducting metal inks, and the broad availability of graphical arts printing technologies are at the base of a revolution which will lead to the fabrication of organic opto-electronics devices by means of high-throughput, inexpensive mass production processes. Additive printing techniques offer in fact advantages in terms of process simplification, layer-to-layer alignment, compatibility with large areas, and potential cost reduction compared to subtractive lithographic patterning. In particular inkjet, which is a non-contact technique, offers high flexibility and is compatible with a large range of functional materials. It is particularly advantageous when controlled volumes of inks have to be placed in precise positions on a substrate, as for example in the case of organic photodetectors (OPDs). The possibility to tune OPDs responsivity, therefore enabling a selective photodetection, and to deposit them in principle on substrates of any kind and shape, make them very appealing for various advanced applications.

Project IPPIA aims to demonstrate inkjet printed OPDs sensitive to the visible spectrum of light, suitable for imaging applications. The final objective of this project is to fabricate small arrays of an organic active pixel by integrating OPDs with suitable organic field-effect transistors, acting as an electrical switch, thus paving the way for cost-effective, light-weight, conformable digital imagers.

Project coordinator: Dr. Mario Caironi

Duration: 01/09/2011-31/08/2014



Inkjet printing of integrated organic optolectronic devices: from molecular design to a digital X-ray imager

Grant n. 2011–0368, Fondazione Cariplo


We aim at studying the physical, chemical and technological aspects involved in the development of a specific optoelectronic device based on organic semiconductors made of a vertically multi-layered photodiode, serving as conversion element from the photon flux to electrical current, coupled to a Field Effect Transistor as addressing element. This complex optoelectronic device defines a high functionality pixel that, replicated in an array, is the basis of an image detector. The perspective application will be the digital X-ray image sensor array, in which the matrix of pixels mentioned above is coupled to a scintillator for the conversion of X-ray radiation into visible photons, with the aim of replacing the slow, conventional film-based X-ray process with an instantly digitized X-ray image. We choose this application since it is inherently a large-area one, as images to be acquired are often larger than 10x10 cm2 and no convenient focusing solutions are available for X-ray.

Project coordinator: Prof. Marco Sampietro – “Politecnico di Milano”

Project partners: CNST@PoliMi-Istituto Italiano di Tecnologia (Mario Caironi), DEIB-Politecnico di Milano (Marco Sampietro), CMIC-Politecnico di Milano (Chiara Bertarelli)

Duration: April 2012-October 2014



Selected Publications

[49] V. D’Innocenzo, A. Luzio, A. Petrozza, D. Fazzi*, M. CAIRONI*
“Nature of charge carriers in a high electron mobility naphthalenediimide based semiconducting co-polymer”
Advanced Functional Materials, accepted for publication, 2014

[48] G. Dell'Erba, A. Luzio, D. Natali, J. Kim, D. Khim, D.-Y. Kim, Y.-Y. Noh*, M. CAIRONI*
“Organic integrated circuits for information storage based on ambipolar polymers and charge injection engineering”
Applied Physics Letters 104 (2014) 153303

[47] G. Grancini, M. De Bastiani, N. Martino, D. Fazzi, H.-J. Egelhaaf, T. Sauermann, M. R. Antognazza, G. Lanzani,  M. CAIRONI, L. Franco*, A. Petrozza*
“The critical role of interfacial dynamics in the stability of organic photovoltaic devices”
Physical Chemistry Chemical Physics 16 (2014) 8294

[46] A. Luzio*, E. V. Canesi, C. Bertarelli*, M. CAIRONI
“Electrospun Polymer Fibers for Electronic Applications”
Materials 7 (2014) 906

[45] X. Y. Chin, J. Yin, Z. Wang, M. CAIRONI, C. Soci*
 “Mapping polarons in polymer FETs by charge modulation microscopy in the mid-infrared”
Scientific Reports 4 (2014) 3626

[44] A. Luzio, F. García Ferré, F. Di Fonzo, M. CAIRONI*
“Hybrid Nanodielectrics for Low-Voltage Organic Electronics”
Advanced Functional Materials 24 (2014) 1790

[43] A. Luzio, D. Fazzi, D. Natali, E. Giussani, K.-J. Baeg, Z. Chen, Y.-Y. Noh*, A. Facchetti*, M. CAIRONI*
“Synthesis, Electronic Structure, and Charge Transport Characteristics of Naphthalenediimide-Based Co-Polymers with Different Oligothiophene Donor Units”
Advanced Functional Materials 24 (2014) 1151

[42] A. Luzio, L. Criante, V. D'Innocenzo, M. CAIRONI*
“Control of charge transport in a semiconducting copolymer by solvent-induced long-range order”
Scientific Reports 3 (2013) 3425

[41] G. Azzellino, A. Grimoldi, M. Binda, M. CAIRONI*, D. Natali*, M. Sampietro
“Fully Inkjet Printed Organic Photodetectors with High Quantum Yield”
Advanced Materials 25 (2013) 6829 - Dedicated Frontispiece on page 6828, DOI: 10.1002/adma.201370298

[40] M. CAIRONI, T. D. Anthopoulos, Y.-Y. Noh, J. Zaumseil
 “Organic and Hybrid Materials for Flexible Electronics” (Editorial)
Advanced Materials 25 (2013) 4208

[39] K.-J. Baeg, M. Binda, D. Natali, M. CAIRONI*, Y.-Y. Noh
“Organic Light Detectors: Photodiodes and Phototransistors”
Advanced Materials 25 (2013) 4267

[38] K.-J. Baeg, M. CAIRONI, Y.-Y. Noh
“Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors”
Advanced Materials 25 (2013) 4210

[37] S.G. Bucella, G. Nava, K.C. Vishunubhatla, M. CAIRONI*
“High-resolution direct-writing of metallic electrodes on flexible substrates for high performance organic field effect transistors”
Organic Electronics 14 (2013) 2249

[36] M. CAIRONI, T. D. Anthopoulos, J. Zaumseil, Y.-Y. Noh
“Selected peer-reviewed articles from EMRS 2012 symposium on "organic and hybrid materials for flexible electronics: Properties and applications" (Editorial)
Journal of Nanoscience and Nanotechnology 13 (2013) 5134

[35] E. Giussani, D. Fazzi*, L. Brambilla, M. CAIRONI, C. Castiglioni
“Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy”
Macromolecules 46 (2013) 2658

[34] M. Carminati, M. Vergani, G. Ferrari, L. Caranzi, M. CAIRONI, M. Sampietro
"Accuracy and resolution limits in quartz and silicon substrates with microelectrodes for electrochemical biosensors"
Sensors and Actuators B: Chemical 174 (2012) 168

[33] E. Canesi, A. Luzio, B. Saglio, A. Bianco, M. CAIRONI, C. Bertarelli
"n-type semiconducting polymer fibers"
ACS Macro Letters 1 (2012) 366

[32] D. Natali, M. CAIRONI
"Charge injection in solution-processed field-effect transistors: Physics, Models and Characterization Methods"
Advanced Materials 24 (2012) 1357

[31] E. Gili, M. CAIRONI, H. Sirringhaus
"Organic integrated complementary inverters with ink-jet printed source/drain electrodes and sub-micron channels"
Applied Physics Letters 100 (2012) 123303

[30] X. Cheng, M. CAIRONI, Y.-Y. Noh, C. Newman, J. Wang, M. J. Lee, K. Banger, R. Di Pietro, A. Facchetti, H. Sirringhaus
"Downscaling of n-channel organic field-effect transistors with inkjet-printed electrodes"
Organic Electronics 13 (2012) 320

[29] D. Fazzi, M. CAIRONI, C. Castiglioni
"Quantum-chemical insights into the prediction of charge transport parameters for a naphtalenetetracarboxydiimide-based copolymer with enhanced electron mobility"
Journal of the American Chemical Society 133 (2011) 47

[28] M. CAIRONI, E. Gili, H. Sirringhaus
"Inkjet printing of downscaled organic electronic devices"
in "Organic Electronics II: More Materials and Applications" by Hagen Klauk, Wiley VCH, December 2011, ISBN: 3527326472

[27] C. Sciascia, N. Martino, T. Schuettfort, B. Watts, G. Grancini, M. R. Antognazza, M. Zavelani-Rossi, C. R. McNeill, M. CAIRONI
"Sub-micrometer charge modulation microscopy of a high mobility polymeric n-channel field-effect transistor"
Advanced Materials 23 (2011) 5086

[26] K.-J. Baeg, J. Kim, D. Khim, M. CAIRONI, D.-Y. Kim, I.-K. You, J. R. Quinn, A. Facchetti, Y.-Y. Noh
"Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits"
ACS Applied Materials & Interfaces 3 (2011) 3205

[25] M. CAIRONI, M. Bird, D. Fazzi, Z. Chen, R. Di Pietro, C. Newman, A. Facchetti, H. Sirringhaus
"Very low degree of energetic disorder as the origin of the high mobility in an n-channel polymer semiconductor"
Advanced Functional Materials 21 (2011) 3371

[24] J. Wang, X. Cheng, M. CAIRONI, F. Gao, X. Yang, N. C. Greenham
"Entirely solution-processed write-once-read-many-times memory devices and their operation mechanism"
Organic Electronics 12 (2011) 1271

[23] M. CAIRONI, Y.-Y. Noh, H. Sirringhaus
"Frequency operation of low-voltage, solution-processed organic field-effect transistors"
Semiconductor Science and Technology 26 (2011) 034006 - Special issue on Organic Electronics

[22] M. CAIRONI, E. Gili, T. Sakanoue, X. Cheng, H. Sirringhaus
“High Yield, Single Droplet Electrode Arrays for Nanoscale Printed Electronics”
ACS Nano 4 (2010) 1451

[21] M. CAIRONI, C. Newman, J. R. Moore, D. Natali, H. Yan, A. Facchetti, H. Sirringhaus
“Efficient charge injection from a high work function metal in high mobility n-type polymer field-effect transistors”
Applied Physics Letters 96 (2010) 183303

[20] J.-F. Chang, M. Gwinner, T. Sakanoue, M. CAIRONI, H. Sirringhaus
"Conjugated polymer-based lateral heterostructures defined by high-resolution photolithography"
Advanced Functional Materials 20 (2010) 2825

[19] X. Cheng, M. CAIRONI, Y.-Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, H. Sirringhaus
“Air Stable Cross-Linked Cytop Ultrathin Gate Dielectric for High Yield Low-Voltage Top-Gate Organic Field-Effect Transistors”
Chemistry of Materials 22 (2010) 1559

[18] Z. Chen, H. Lemke, S. Albert-Seifried, M. CAIRONI, M. M. Nielsen, M. Heeney, I. McCulloch, H. Sirringhaus
“High mobility ambipolar charge transport in polyselenophene conjugated polymers”
Advanced Materials 22 (2010) 2371

[17] E. Gili, M. CAIRONI, H. Sirringhaus
“Picoliter Printing”
Handbook of Nanofabrication, October 2009, Edited by Gary Wiederrecht, Elsevier.

[16] M. Binda, T. Agostinelli, M. CAIRONI, D. Natali, M. Sampietro, L. Beverina, R. Ruffo, F. Silvestri
“Fast and air stable near-infrared organic detector based on squaraine dyes”
Organic Electronics 10 (2009) 1314

[15] M. Kemerink, T. Hallam, M. J. Lee, N. Zhao, M. CAIRONI, H. Sirringhaus
“Temperature- and density-dependent channel potentials in high-mobility organic field-effect transistors”
Physical Review B 80 (2009) 115325

[14] E. V. Canesi, C. Bertarelli, A. Bianco, M. CAIRONI, G. Dassa, D. Natali, A. Rottigni, M. Sampietro, G. Zerbi
"Non-volatile memory devices based on Diphenyl Bithiophenes”
Advances in Science and Technology 54 (2008) 458

[13] M. CAIRONI, D. Natali, C. Bertarelli, G. Zerbi, M. Sampietro
"Three-levels conductance switching in an organic memory cell"
Thin Solid Films 516 (2008) 7680

[12] T. Agostinelli, M. CAIRONI, D. Natali, M. Sampietro, G. Dassa, E. V. Canesi, C. Bertarelli, G. Zerbi, J. Cabanillas-Gonzalez, S. De Silvestri, G. Lanzani
“A planar organic near infrared light detector based on bulk heterojunction of a heteroquaterphenoquinone and poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]”
Journal of Applied Physics 104 (2008) 114508

[11] Y.-Y. Noh, N. Zhao, M. CAIRONI, H. Sirringhaus
”Downscaling of self-aligned, all-printed polymer thin film transistors”
Nature Nanotechnology 2 (2007) 784-789

[10] M. CAIRONI, T. Agostinelli, D. Natali, M. Sampietro, R. Cugola, S. Luzzati, M. Catellani
“External quantum efficiency versus charge carriers mobility in polythiophene/methanofullerene based planar photodetectors”
Journal of Applied Physics 102 (2007) 024503

[9] T. Agostinelli, P. Biagioni, M. CAIRONI, L. Duò, M. Finazzi, D. Natali, M. Sampietro
“Space charge effects on the active region of a planar organic photodetector”
Journal of Applied Physics 101 (2007) 114504

[8] T. Agostinelli, M. CAIRONI, D. Natali,  M. Sampietro, M. Arca, F. A. Devillanova, V. Ferrero
“Trapping effects on the frequency response of dithiolene-based planar photodetectors”
Synthetic Metals 157 (2007) 984

[7] M. CAIRONI, D. Natali, M. Sampietro, C. Bertarelli, A. Bianco, A. Dundulachi, E. Canesi, G. Zerbi
“Organic memory device based on 3,3’-bis-(3,5-di-tert-butyl-4-methoxy phenyl)-2,2’-bithiophene with high endurance and robustness to ambient air operation”
Applied Physics Letters 89 (2006) 243519

[6] M. C. Aragoni, M. Arca, F. A. Devillanova, F. Isaia, A. Mancini, L. Pala, V. Lippolis, G. Verani, T. Agostinelli, M. CAIRONI, D. Natali, M. Sampietro
“Near-IR photodetectors based on neutral [M(R-dmet)2] bis(1,2-dithiolene) metal complexes”
Inorganic Chemistry Communications 10 (2006) 191

[5] D. Natali, M. CAIRONI, M. Sampietro, A. P. Meacham, S. J. Vickers and M. D. Ward
“Near-infrared photodetection with a diruthenium complex having redox-switchable wavelength response”
Optical Materials, 28/12 (2006) 1362-1365

[4] W. Porzio, S. Destri, M. Pasini, A. Bolognesi, A. Angiulli, P. Di Gianvincenzo, D. Natali, M. Sampietro, M. CAIRONI, L. Fumagalli, S. Ferrari, E. Peron and F. Perissinotti
“Oligo- and polymeric FET devices: Thiophene-based active materials and their interaction with different gate dielectrics”
Materials Science and Engineering C 26 (2006) 996-1001

[3] M. CAIRONI, D. Natali, M. Sampietro, M. Ward, A. Meacham, F. A. Devillanova, M. Arca, C. Denotti, L. Pala
“Near infrared detection by means of coordination complexes”
Synthetic Metals 153 (2005) 273-276   

[2] M. Macchetti, M. CAIRONI, L. Breveglieri, A. Cherubini
“A complete formulation of generalized affine equivalence”
Lectures Notes in Computer Science 3701 – Theoretical Computer Science 3701 (2005) 338-347

[1] M. C. Aragoni, M. Arca, M. CAIRONI, C. Denotti, F. A. Devillanova, E.  Grigiotti, F. Isaia, F. Laschi, V. Lippolis, D. Natali, L. Pala, M. Sampietro and P. Zanello
”Monoreduced [M(R,R’timdt)2]- dithiolenes (M = Ni, Pd, Pt; R,R’timdt= disubstituted imidazolidine-2,4,5-trithione): solid state photoconducting properties in the third optical fiber window”
Chemical Communications 16 (2004) 1882-1883


- ERC 2014 Starting Grant

- As PI of the project "SOLAR-PRINT" won the first prize for the “CleanTech & AgroFood” section at the StartCup Milano- Lombardia 2011 and was finalist for the “Green” section at the national stage of “Working Capital 2011” promoted by Telecom and PNI

- 2011 European Marie-Curie Career Integration Grant


I numeri di IIT

L’Istituto Italiano di Tecnologia (IIT) è una fondazione di diritto privato - cfr. determinazione Corte dei Conti 23/2015 “IIT è una fondazione da inquadrare fra gli organismi di diritto pubblico con la scelta di un modello di organizzazione di diritto privato per rispondere all’esigenza di assicurare procedure più snelle nella selezione non solo nell’ambito nazionale dei collaboratori, scienziati e ricercatori ”.

IIT è sotto la vigilanza del Ministero dell'Istruzione, dell'Università e della Ricerca e del Ministero dell'Economia e delle Finanze ed è stato istituito con la Legge 326/2003. La Fondazione ha l'obiettivo di promuovere l'eccellenza nella ricerca di base e in quella applicata e di favorire lo sviluppo del sistema economico nazionale. La costruzione dei laboratori iniziata nel 2006 si è conclusa nel 2009.

Lo staff complessivo di IIT conta circa 1440 persone. L’area scientifica è rappresentata da circa l’85% del personale. Il 45% dei ricercatori proviene dall’estero: di questi, il 29% è costituito da stranieri provenienti da oltre 50 Paesi e il 16% da italiani rientrati. Oggi il personale scientifico è composto da circa 60 principal investigators, circa 110 ricercatori e tecnologi di staff, circa 350 post doc, circa 500 studenti di dottorato e borsisti, circa 130 tecnici. Oltre 330 posti su 1400 creati su fondi esterni. Età media 34 anni. 41% donne / 59 % uomini.

Nel 2015 IIT ha ricevuto finanziamenti pubblici per circa 96 milioni di euro (80% del budget), conseguendo fondi esterni per 22 milioni di euro (20% budget) provenienti da 18 progetti europei17 finanziamenti da istituzioni nazionali e internazionali, circa 60 progetti industriali

La produzione di IIT ad oggi vanta circa 6990 pubblicazioni, oltre 130 finanziamenti Europei e 11 ERC, più di 350 domande di brevetto attive, oltre 12 start up costituite e altrettante in fase di lancio. Dal 2009 l’attività scientifica è stata ulteriormente rafforzata con la creazione di dieci centri di ricerca nel territorio nazionale (a Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) e internazionale (MIT ed Harvard negli USA) che, unitamente al Laboratorio Centrale di Genova, sviluppano i programmi di ricerca del piano scientifico 2015-2017.


IIT: the numbers

Istituto Italiano di Tecnologia (IIT) is a public research institute that adopts the organizational model of a private law foundation. IIT is overseen by Ministero dell'Istruzione, dell'Università e della Ricerca and Ministero dell'Economia e delle Finanze (the Italian Ministries of Education, Economy and Finance).  The Institute was set up according to Italian law 326/2003 with the objective of promoting excellence in basic and applied research andfostering Italy’s economic development. Construction of the Laboratories started in 2006 and finished in 2009.

IIT has an overall staff of about 1,440 people. The scientific staff covers about 85% of the total. Out of 45% of researchers coming from abroad 29% are foreigners coming from more than 50 countries and 16% are returned Italians. The scientific staff currently consists of approximately 60 Principal Investigators110 researchers and technologists350 post-docs and 500 PhD students and grant holders and 130 technicians. External funding has allowed the creation of more than 330 positions . The average age is 34 and the gender balance proportion  is 41% female against 59% male.

In 2015 IIT received 96 million euros in public funding (accounting for 80% of its budget) and obtained 22 million euros in external funding (accounting for 20% of its budget). External funding comes from 18 European Projects, other 17 national and international competitive projects and approximately 60 industrial projects.

So far IIT accounts for: about 6990 publications, more than 130 European grants and 11 ERC grants, more than 350 patents or patent applications12 up start-ups and as many  which are about to be launched. The Institute’s scientific activity has been further strengthened since 2009 with the establishment of 11 research nodes throughout Italy (Torino, Milano, Trento, Parma, Roma, Pisa, Napoli, Lecce, Ferrara) and abroad (MIT and Harvard University, USA), which, along with the Genoa-based Central Lab, implement the research programs included in the 2015-2017 Strategic Plan.


IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website.
By clicking on further information, the full information notice on the types of cookies used will be displayed and you will be able to choose whether or not to accept cookies whilst browsing on the website.
Further information
Accept and close